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Abstract— A method is presented that simplifies the process

of incorporating a refined mesh around a discontinuity in a
finite-difference time-domain algorithm. The technique is used to
calculate the tangential electric fields on the boundaries between

different sized cells in a variable step size mesh environment. A
waveguide is modeled in two dimensions and the accuracy of the

mesh refinement algorithm is tested by measuring the amouut of

field reflected during the transition from a coarse mesh to a fine
mesh. The amount of error is found to be less than 170.

I. INTRODUCTION

u SE OF the finite-difference time-domain (FDTD) method

as a technique for modeling electromagnetic wave prop-

agation was first proposed by Yee [1] in 1966. Since then the

FDTD has been successfully used to analyze the properties of

both guiding and radiating structures.

One of the dominant aspects governing the accuracy of

the FDTD is the size of the spatial increment used in the

model. The spatial increment used in the regions that contain

sharp discontinuities must be chosen small enough to accu-

rately model the highly nonuniform field distributions. The

effect of having a reduced mesh cell size is to increase the

computational run }ime and memory requirements. This can

result in the model becoming too large and time consuming to

implement. Most structures also contain large regions where

the fields vary slowly and smoothly; having a reduced cell

size in these areas presents no real advantage. This implies

that the application of a localized refined mesh would provide

improved accuracy without the resulting considerable increase

in the amount of computational storage required.

In the past, there liave been a number of different mesh

refinement schemes proposed [2], [3]. This letter puts forward

a modified form of the variable step size method (VSSM)

proposed in 1991 by Zivanovic, Yee, and Mei [4]. The second-

order finite-difference equation (SOFDE) is used to calculate

the tangential field values at the coarse and refined mesh

boundary. It is shown that the modified technique gives a

similar level of accuracy to that obtained using the VSSM

whilst also providing a number of other advantages.
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II. THE MESH REFINEMENT TECHNIQUE

When implementing a FDTD algorithm that contains multi-

ple cell sizes, the only field values that cannot be calculated by

using the standard FDTD are the tangential electric fields at the

interface between the coarse and fine meshes. The fields are

calculated using the homogeneous traveling wave equation:

(1)

This equation can be approximated by centred differences

to form the second-order finite-difference equation (SOFDE).

Using Yee’s notation, n indicates the time increment; (z, j, k)

correspond to the cartesian coordinates (x, y, z); Ax, A y, and

Az are the spatial increments; and At is the corresponding

time increment:

En+l(i, ~, k) = 2En(2, j,k) – E ~-l(i, j,k) + v: At’

[
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(2)

For simplicity, the mesh refinement algorithm will be pre-

sented for the two-dimensional case, with A.z = Az and

assuming TE-wave propagation (Ev, HZ, Hz only). A mesh

reduction factor of 4 will be used as depicted in Fig. 1. The

time increments used in the FDTD algorithm for the coarse

and fine mesh regions will be symbolized by AtC and Atf

respectively, where AtC = 4At f. We will only consider the

calculation of the Ev field component on the coarsehlne mesh
interface, since all other fields can be calculated using the

normal FDTD equations.

We begin describing the mesh refinement algorithm (MRA)

by assuming a time sequence where t = n represents the

present time; all field values, present and past, have been

calculated.

Firstly, we calculate the second-order special difference

equations, D<, at each coarse node on the boundary illustrated

in Fig. 1. For example, at point 3 this would be

D3=E2+E4+ El+ E~–4E3. (3)
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Fig. 1. Region used to calculate the fields at the coarselfine mesh interface.

Next, the second-order differences are found for the fine

mesh nodes by using standard interpolation techniques on the

coarse mesh results. For example, at point 5 we would have

D6 – D1 +DG+DI–2DS
D5=D3+ ~

32 ‘“
(4)

These differences can now be used to calculate the field

values for the next coarse mesh time step and all of the

intermediate fine mesh time steps.

At t = n + At~,all fields on the boundary am calculated

using the SOFDE with At = At f. The field at point 5 in Fig.

1 would be calculated as

n+Atf
Es = 2E; – @-Atf + &!D5.

AZ2
(5)

This process is repeated for each time increment up to and

including t = n + At., after which the whole algorithm is

repeated.

The difference between the MRA and the VSSM can

be seen in the way that the second-order differences are

calculated. For the VSSM, the second-order differences are

calculated from spatially interpolated field values, whereas in

this letter, the second-order differences are first calculated, then

interpolated in space. Reversing the order of the calculations

has the advantage of requiring less computational memory

and requires less computational time. For a single coarse cell

on the boundary, the VSSM requires the memorizing of 15

interpolated field values (assuming a 1:4 reduction), the MRA

only requires the memorizing of four second-order differences.

III. APPLICATION AND RESULTS

The waveguide structure was modeled in two dimensions

and excited with a Gaussian pulsed TEIO mode. The analysis

was carried out twice, firstly with the reduced mesh included

half way along the guide, then without. Field values were

recorded through time for each to obtain the incident and
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Fig. 2. Reflectionsfrom the coarsehinemeshinterface. — MRA, ----
VSSM. (a) transverselysubdividedmesh.(b) Longitudinally subdividedmesh.
(c) transverse-longitudinallysubdividedmesh.
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reflected fields. These were Fourier transformed to calculate

the frequency-domain reflection coefficient.

Three different arrangements of the fine mesh were inves-

tigated. These involved mesh subgridding in the transverse

direction, Fig. 2(a), the longitudinal direction, Fig. 2(b), and

in both directions, Fig. 2(c). These three different fine mesh

cell shapes were used since they represent the different con-

figurations found in FDTD algorithms.

Both the technique outlined in this letter (MRA) and that

published by Zivanovic et al. [4] (VSSM), were applied to find

the percentage reflection from the coarsehine mesh boundary.

The results are demonstrated in Fig. 2(a)–(c) for comparison.

Fig. 2(a) and Fig. 2(c) show that the MRA performs

as well as the VSSM for the meshes that are subdivided

transversely and transverse-longitudinally. This is because

the error produced by the second-order differencing in the

modified algorithm is equivalent to that produced by the two-

dimensional interpolation in the original VSSM. It can be seen

that for both subgridding methods that reflection errors of less

than 1?k are achievable. In the longitudinally subdivided case,

Fig. 2(b), the error is greater since the VSSM algorithm only

has a one-dimensional interpolation; fortunately, a mesh of

this shape is of little advantage

In a parallel computing environment, the computational

speed is governed by the number of serial operations required

to carry out a given task. In our analysis, for the transverse-

longitudinal case, the MRA required a total of 16 serial

calculations less than the VSSM per coarse time step. Our

program using the MRA, which was run on a MasPar MP- 1

massively parallel computer, was found to run 15~0 faster than

that using the VSSM. In this regard, it can also be seen that the

simplicity of the MRA allows for creation of more efficient

subdivided mesh algorithms.

IV. CONCLUSION

An algorithm for incorporating reduced cell sizes into finite-

difference time-domain technique has been presented. The

accuracy has been shown to be the same as that achieved

by previous methods for the majority of applications. The

main advantages of this method are that it requires less

computational memory and CPU time to apply compared with

previous techniques, which are dominant factors governing

the use of any finite-difference time-domain analysis. Another

positive aspect of this new algorithm is the simplicity by which

it can be applied, even when the size of the coarse mesh is

not an integer multiple of the fine mesh size.
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