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A Method for Incorporating Different
Sized Cells into the Finite-Difference
Time-Domain Analysis Technique
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Abstract— A method is presented that simplifies the process
of incorporating a refined mesh around a discontinuity in a
finite-difference time-domain algorithm. The technique is used to
calculate the tangential electric fields on the boundaries between
different sized cells in a variable step size mesh environment. A
waveguide is modeled in two dimensions and the accuracy of the
mesh refinement algorithm is tested by measuring the amount of
field reflected during the transition from a coarse mesh to a fine
mesh. The amount of error is found to be less than 1%.

1. INTRODUCTION

SE OF the finite-difference time-domain (FDTD) method

as a technique for modeling electromagnetic wave prop-
agation was first proposed by Yee [1] in 1966. Since then the
FDTD has been successfully used to analyze the properties of
both guiding and radiating structures.

One of the dominant aspects governing the accuracy of
the FDTD is the size of the spatial increment used in the
model. The spatial increment used in the regions that contain
sharp discontinuities must be chosen small enough to accu-
rately model the highly nonuniform field distributions. The
effect of having a reduced mesh cell size is to increase the
computational run time and memory requirements. This can
result in the model becoming too large and time consuming to
implement. Most structures also contain large regions where
the fields vary slowly and smoothly; having a reduced cell
size in these areas presents no real advantage. This implies
that the application of a localized refined mesh would provide
improved accuracy without the resulting considerable increase
in the amount of computational storage required.

In the past, there have been a number of different mesh
refinement schemes proposed [2], [3]. This letter puts forward
a modified form of the variable step size method (VSSM)
proposed in 1991 by Zivanovic, Yee, and Mei [4]. The second-
order finite-difference equation (SOFDE) is used to calculate
the tangential field values at the coarse and refined mesh
boundary. It is shown that the modified technique gives a
similar level of accuracy to that obtained using the VSSM
whilst also providing a number of other advantages.
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II. THE MESH REFINEMENT TECHNIQUE

When implementing a FDTD algorithm that contains multi-
ple cell sizes, the only field values that cannot be calculated by
using the standard FDTD are the tangential electric fields at the
interface between the coarse and fine meshes. The fields are
calculated using the homogeneous travelling wave equation:
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This equation can be approximated by centred differences
to form the second-order finite-difference equation (SOFDE).
Using Yee’s notation, n indicates the time increment; (z, j, k)
correspond to the cartesian coordinates (x,y, z); Az, Ay, and
Az are the spatial increments; and At is the corresponding
time increment:
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For simplicity, the mesh refinement algorithm will be pre-
sented for the two-dimensional case, with Az = Az and
assuming TE-wave propagation (E,, H,, H, only). A mesh
reduction factor of 4 will be used as depicted in Fig. 1. The
time increments used in the FDTD algorithm for the coarse
and fine mesh regions will be symbolized by A¢. and Aty
respectively, where At. = 4At,;. We will only consider the
calculation of the £, field component on the coarse/fine mesh
interface, since all other fields can be calculated using the
normal FDTD equations.

We begin describing the mesh refinement algorithm (MRA)
by assuming a time sequence where ¢{ = n represents the
present time; all field values, present and past, have been
calculated.

Firstly, we calculate the second-order special difference
equations, D;, at each coarse node on the boundary illustrated
in Fig. 1. For example, at point 3 this would be

Dy =Ey+Ey+ By + Eg — 4E5. 3)
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Fig. 1. Region used to calculate the fields at the coarse/fine rnesh interface.

Next, the second-order differences are found for the fine
mesh nodes by using standard interpolation techniques on the
coarse mesh results. For example, at point 5 we would have

DG_D1+D6+D1_2D3

Ds=D
5 3 + 3 32
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These differences can now be used to calculate the field
values for the next coarse mesh time step and all of the
intermediate fine mesh time steps.

At t = n + Aty, all fields on the boundary are calculated
using the SOFDE with At = At;. The field at point 5 in Fig.
1 would be calculated as
v2ALE
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This process is repeated for each time increment up to and
including ¢ = n + At after which the whole algorithm is
repeated.

The difference between the MRA and the VSSM can
be seen in the way that the second-order differences are
calculated. For the VSSM, the second-order differences are
calculated from spatially interpolated field values, whereas in
this letter, the second-order differences are first calculated, then
interpolated in space. Reversing the order of the calculations
has the advantage of requiring less computational memory
and requires less computational time. For a single coarse cell
on the boundary, the VSSM requires the memorizing of 15
interpolated field values (assuming a 1:4 reduction), the MRA
only requires the memorizing of four second-order differences.

IIT. APPLICATION AND RESULTS

The waveguide structure was modeled in two dimensions
and excited with a Gaussian pulsed TE;y mode. The analysis
was carried out twice, firstly with the reduced mesh inciuded
half way along the guide, then without. Field values were
recorded through time for each to obtain the incident and
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Fig. 2. Reflections from the coarse/fine mesh interface. MRA, ----
VSSM. (a) transversely subdivided mesh. (b) Longitudinally subdivided mesh.
(c) transverse-longitudinally subdivided mesh.
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reflected fields. These were Fourier transformed to calculate
the frequency-domain reflection coefficient.

Three different arrangements of the fine mesh were inves-
tigated. These involved mesh subgridding in the transverse
direction, Fig. 2(a), the longitudinal direction, Fig. 2(b). and
in both directions, Fig. 2(c). These three different fine mesh
cell shapes were used since they represent the different con-
figurations found in FDTD algorithms.

Both the technique outlined in this letter (MRA) and that
published by Zivanovic et al. [4] (VSSM), were applied to find
the percentage reflection from the coarse/fine mesh boundary.
The results are demonstrated in Fig. 2(a)-(c) for comparison.

Fig. 2(a) and Fig. 2(c) show that the MRA performs
as well as the VSSM for the meshes that are subdivided
transversely and transverse-longitudinally. This is because
the error produced by the second-order differencing in the
modified algorithm is equivalent to that produced by the two-
dimensional interpolation in the original VSSM. It can be seen
that for both subgridding methods that reflection errors of less
than 1% are achievable. In the longitudinally subdivided case,
Fig. 2(b), the error is greater since the VSSM algorithm only
has a one-dimensional interpolation; fortunately, a mesh of
this shape is of little advantage

In a parallel computing environment, the computational
speed is governed by the number of serial operations required
to carry out a given task. In our analysis, for the transverse-
longitudinal case, the MRA required a total of 16 serial
calculations less than the VSSM per coarse time step. Our
program using the MRA, which was run on a MasPar MP-1

massively parallel computer, was found to run 15% faster than
that using the VSSM. In this regard, it can also be seen that the
simplicity of the MRA allows for creation of more efficient
subdivided mesh algorithms.

IV. CONCLUSION

An algorithm for incorporating reduced cell sizes into finite-
difference time-domain technique has been presented. The
accuracy has been shown to be the same as that achieved
by previous methods for the majority of applications. The
main advantages of this method are that it requires less
computational memory and CPU time to apply compared with
previous techniques, which are dominant factors governing
the use of any finite-difference time-domain analysis. Another
positive aspect of this new algorithm is the simplicity by which
it can be applied, even when the size of the coarse mesh is
not an integer multiple of the fine mesh size.
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